Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A recentRestoration Ecologyarticle by Merchant et al. (2022) suggested that practitioners do not regularly use functional traits in restoration planning. We disagree and provide our collective experience that practitioners do leverage trait‐based approaches and information, but in ways that are different from researchers. Here, we provide an expanded perspective that incorporates practitioner voices to provide a more complete assessment of how traits are used in restoration practice. We highlight that a major challenge in the field of restoration ecology that leads to a disconnect between researchers and practitioners is a different set of knowledge systems, goals, incentives, and limitations. We provide approaches that researchers can use to connect with practitioners and leverage their knowledge.more » « less
-
ABSTRACT We present a timeseries of14CO2for the period 1910–2021 recorded by annual plants collected in the southwestern United States, centered near Flagstaff, Arizona. This timeseries is dominated by five commonly occurring annual plant species in the region, which is considered broadly representative of the southern Colorado Plateau. Most samples (1910–2015) were previously archived herbarium specimens, with additional samples harvested from field experiments in 2015–2021. We used this novel timeseries to develop a smoothed local record with uncertainties for “bomb spike”14C dating of recent terrestrial organic matter. Our results highlight the potential importance of local records, as we document a delayed arrival of the 1963–1964 bomb spike peak, lower values in the 1980s, and elevated values in the last decade in comparison to the most current Northern Hemisphere Zone 2 record. It is impossible to retroactively collect atmospheric samples, but archived annual plants serve as faithful scribes: samples from herbaria around the Earth may be an under-utilized resource to improve understanding of the modern carbon cycle.more » « less
-
Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.more » « less
-
Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.more » « less
-
Abstract Light‐absorbing particles in atmospheric dust deposited on snow cover (dust‐on‐snow, DOS) diminish albedo and accelerate the timing and rate of snow melt. Identification of these particles and their effects is relevant to snow‐radiation modeling and water‐resource management. Laboratory‐measured reflectance of DOS samples from the San Juan Mountains (USA) were compared with DOS mass loading, particle sizes, iron mineralogy, carbonaceous matter type and content, and chemical compositions. Samples were collected each spring for water years 2011–2016, when individual dust layers had merged into one (all layers merged) at the snow surface. Average reflectance values of the six samples were 0.2153 (sd, 0.0331) across the visible wavelength region (0.4–0.7 μm) and 0.3570 (sd, 0.0498) over the full‐measurement range (0.4–2.50 μm). Reflectance values correlated inversely to concentrations of ferric oxide, organic carbon (1.4–10 wt.%), magnetite (0.05–0.13 wt.%), and silt (PM63‐3.9;median grain sizes averaged 21.4 μm) but lacked correspondence to total iron and PM10contents. Measurements of reflectance and Mössbauer spectra and magnetic properties indicated that microcrystalline hematite and nano‐size goethite were primarily responsible for diminished visible reflectance. Positive correlations between organic carbon and metals attributed to fossil‐fuel combustion, with observations from electron microscopy, indicated that some carbonaceous matter occurred as black carbon. Magnetite was a surrogate for related light‐absorbing minerals, dark rock particles, and contaminants. Similar analyses of DOS from other areas would help evaluate the influences of varied dust sources, wind‐storm patterns, and anthropogenic inputs on snow melt and water resources in and beyond the Colorado River Basin.more » « less
An official website of the United States government
